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Motivating example (Sun-Xie)

Consider one-dimensional O-U process:

dXt = −Xt dt+ dBt.

It is known that Xt exponentially converges to π := N(0, 1/2) as t→∞.

Question:

dXt = ((1 + t)−1 − 1)Xt dt+ dBt.

It can be proved that the process Xt is W2-strongly ergodic in the sense that

lim
t→∞

W2(P (s, x; t, ·), π) = 0.
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Motivating example (Sun-Xie)

It can be proved that the process Xt is W2-strongly ergodic in the sense that

lim
t→∞

W2(P (s, x; t, ·), π) = 0.

Strong ergodicity:

sup
x∈R
‖P (t, x, ·)− π‖Var ≤ Ce−λt.

Nonhomogeneous Markov chain: Isofescu (1980/2007): Finite Markov chains and

their applications.

lim
t→∞

‖P (s, x; t, ·)− π‖Var = 0.

Note: In general we cannot hope to find a single invariant measure. (πs)s≥0 is a

system of invariant measures (Da Prato-Röckner, 08):∫
R
Ps,tf(x)πt(dx) =

∫
R
f(x)πs(dx), s ≤ t.
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Motivating example (Sun-Xie)

Note: (πs)s≥0 is a system of invariant measures (Da Prato-Röckner, 08):∫
R
Ps,tf(x)πt(dx) =

∫
R
f(x)πs(dx), s ≤ t.

Example: Time-dependent stable-like process

Ltf(x) = p.v.

∫
Rd
(f(x+ z)− f(x))K(t, x, z)

1

|z|d+α
dz,

where for every t > 0, K(t, ·, ·) is multivariate 1-periodic.

sup
x∈Rd

|Ps,tf(x)− µs(f)| ≤ c0e−c1(t−s)‖f‖∞.

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 5 / 25
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Motivating example (Sun-Xie)

Note: (πs)s≥0 is a system of invariant measures (Da Prato-Röckner, 08):∫
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Motivating example (Sun-Xie)

dXt = ((1 + t)−1 − 1)Xt dt+ dBt.

It can be proved that the process Xt is W2-strongly ergodic in the sense that

lim
t→∞

W2(P (s, x; t, ·), π) = 0.

Question: Convergence rate?

Question: Beyond the variant of O-U process?
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Convergence rate

One-dimensional time-inhomogeneous process

dXs,t = (φ(t)−Xs,t) dt+ dBt, t ≥ s ≥ 0, Xs,s = x.

Xs,t = e−(t−s)x+

∫ t

s

e−(t−u)φ(u) du+

∫ t

s

e−(t−u)dBu.

(δxPs,t)(dy) =
1√

π(1− e−2(t−s))
exp

(
−
(
y − e−(t−s)x−

∫ t
s
e−(t−u)φ(u) du

)2
1− e−2(t−s)

)
dy.

Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal

distributions, J. Multivariate Anal., 12 (1982), 450–455.

W2(δxPs,t, δyPs,t) = es−t|x− y|.
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Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal

distributions, J. Multivariate Anal., 12 (1982), 450–455.

W2(δxPs,t, δyPs,t) = es−t|x− y|.

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 7 / 25
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Convergence rate

One-dimensional time-inhomogeneous process

dXs,t = (φ(t)−Xs,t) dt+ dBt, t ≥ s ≥ 0, Xs,s = x.

When limt→∞ φ(t) = 0, the limit process is expected to be

dYt = −Yt dt+ dBt, t ≥ s, Ys = x.

W2(δxPs,t, π)
2 = e−2(t−s)x2 + 2 e−(t−s)x

∫ t

s

e−(t−u)φ(u) du

+
∣∣∣ ∫ t

s

e−(t−u)φ(u) du
∣∣∣2

+
1

2

(
1−

(
1− e−2(t−s)

)1/2)2
.

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 8 / 25



Beyond the variant of O-U process

One-dimensional time-inhomogeneous process

dXs,t = (φ(t)−Xs,t) dt+ dBt, t ≥ s ≥ 0, Xs,s = x.

When limt→∞ φ(t) = 0, the limit process is expected to be

dYt = −Yt dt+ dBt, t ≥ s, Ys = x.
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Long-time behavior of time-inhomogeneous SDEs

Consider one-dimensional time-inhomogeneous process:

dXt = (φ(t)−Xt) dt+ dZt,

where φ : [0,∞)→ [0,∞) and (Zt)t≥0 is a one-dimensional Lévy process.

If limt→∞ φ(t) = 0, then it is naturally expected that the process (Xt)t≥0 above

enjoys the same long time behavior as that of the time-homogeneous O-U process

dXt = −Xt dt+ dZt.

It is well known that the process (Xt)t≥0 admits a unique invariant probability

measure, written as π, and it converges exponentially to π.

Subsequently, a spontaneous question one might ask is that, under what conditions,

the transition kernel of the time-inhomogeneous process (Xt)t≥0 will converge to

the invariant probability measure π.
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Ergodicity of the McKean-Vlasov SDE

Consider

dXt = b(Xt,LXt) dt+ dZt,

where LXt means the law of Xt and (Zt)t≥0 is a d-dimensional Lévy process.

Due to the intervention of the measure variable, the solution process (Xt)t≥0 is

a nonlinear Markov process whose transition kernel may depend not only on the

current state of the process but also on the current distribution of the process.

Provided that the McKean-Vlasov SDE is weakly wellposed, the weak solution

(Xt)t≥0 shares the same distribution as that of the corresponding decoupled SDE

dY µt = b(Y µt , µt) dt+ dZt, LY µ0
= µ,

where µt := LXt with the initial distribution LY0 = µ. That is, we have LXt =

LY µt
when LX0

= LY µ0
= µ.

Therefore, the exploration on the McKean-Vlasov SDE amounts to the counterpart

of the corresponding decoupled SDE. Note that the drifts of the decoupled SDEs

are not the same once the initial distributions involved are different.
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Setting

In this talk, we are interested in the following SDEs on Rd:

dXt = bt(Xt) dt+ dZt,

and

dYt = b̃t(Yt) dt+ dZt,

where b, b̃ : [0,∞)×Rd → Rd are measurable, and (Zt)t≥0 is a d-dimensional pure

jump Lévy process with the Lévy measure ν.

• Eberle, A. and Zimmer, R.: Sticky couplings of multidimensional diffusions with different drifts, Ann. Inst. Henri Poincaré

Probab. Stat., 55 (2019), 2370–2394.

• Lefter, M., Šǐska, D. and Szpruch, L.: Decaying derivative estimates for functions of solutions to non-autonomous SDEs,

arXiv:2207.1287

• Suzuki, K.: Weak convergence of approximate reflection coupling and its application to non-convex optimization,

arXiv:2205.11970

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 12 / 25
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Assumptions

For the drift bt(x) and the Lévy measure ν(dz), we assume that

(A1) (i) there exist constants K1, `0 ≥ 0 and K2 > 0 such that for all t ≥ 0

and x, y ∈ Rd,

〈x− y, bt(x)− bt(y)〉 ≤
(
K11{|x−y|≤`0} −K21{|x−y|>`0}

)
|x− y|2.

(ii) there exist a constant κ > 0 and a nondecreasing and concave func-

tion σ ∈ C([0, 2`0];R+) ∩ C2((0, 2`0];R+) such that [0, 2`0] 3 r 7→∫ r
0

1
σ(s) ds is integrable, and

σ(r) ≤ 1

2r
Jν(r ∧ κ)(κ ∧ r)2, r ∈ (0, 2`0],

where

Jν(s) := inf
x∈Rd,|x|≤s

(
ν ∧ (δx ∗ ν)

)
(Rd), s > 0.
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Assumptions

(A2) there exist a C2-function W : Rd → [0,∞), locally integrable functions

φ1, φ2, φ3 : [0,∞)→ [0,∞) and a locally integrable function λW : [0,∞)→
R such that for all t ≥ 0 and x ∈ Rd,

|bt(x)− b̃t(x)| ≤ φ1(t) + φ2(t)W (x),

and

(L b̃
t W )(x) ≤ φ3(t) + λW (t)W (x),

where L b̃
t means the infinitesimal generator of (Yt)t≥0.
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Main result

Theorem 1

Assume that (A1) and (A2) hold. Then, for all t > s and x, y ∈ Rd,

W1(δxP
X
s,t, δyP

Y
s,t)

≤ 1 + c∗

2c∗

[
e−λ(t−s) |x− y|+

∫ t

s

e−λ(t−r) φ1(r) dr

+

∫ t

s

φ2(r) e
−λ(t−r)

(
e
∫ r
s
λW (u) duW (y) +

∫ r

s

φ3(u) e
∫ r
u
λW (v) dv du

)
dr

]
,

where

c∗ := e−g(2`0), λ :=
(1 ∧ (2K2))c

∗

1 + c∗
, g(2`0) := (1 + 2K1)

∫ 2`0

0

1

σ(s)
ds.
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Corollary

Corollary 1

Consider the time-homogeneous versions of two SDEs above. Assume that (A1)

and (A2) hold with λW (t) ≡ λW < 0, φ1(t) ≡ κ1, φ2(t) ≡ κ2, and φ3(t) ≡ CW
for some constants CW , κ1, κ2 > 0. Then for all t > 0 and x, y ∈ Rd,

W1

(
δxP

X
t , δyP

Y
t

)
≤ 1 + c∗

2c∗

{
e−λt |x− y|+ λ−1(κ1 − κ2CW /λW )(1− e−λt)

+ κ2 e
λW tW (y)

[
1

λ+ λW
(1− e−(λ+λW )t)

]}
.
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Application: Long time behavior of inhomogeneous SDEs

with jumps

Let (Xt)t≥0 be the unique strong solution to the time-inhomogeneous SDE, which

fulfills Assumption (A1). Assume that the following time-homogeneous SDE on

Rd:

dXt = b(Xt) dt+ dZt

with b : Rd → Rd has a unique strong solution, which is denoted by (Xt)t≥0.

We assume that

(C) there are a C2-function W : Rd → [0,∞) and a bounded function φ :
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Application: Long time behavior of inhomogeneous SDEs

with jumps

Theorem 2

Assume that (A1) and (C) hold. Then, for all x ∈ Rd and t > s ≥ 0,

W1(δxP
X
s,t, π) ≤ C(x) e−λ(t−s) +

1 + c∗

2c∗

[
‖φ‖∞W (x) e−λ(t−s)(e(λ−θ)(t−s)−1)

λ− θ

+
c0
θ

∫ t

s

φ(r) e−λ(t−r) dr

]
,

where π is the unique invariant probability measure of the process (Xt)t≥0. In

particular,

W1(δxP
X
s,t, π)→ 0, t→∞.

Furthermore, if φ(t) = c1 e
−λ0t for some constants c1, λ0 > 0, then for any

0 < λ∗ < min{λ, λ0, θ}, x ∈ Rd and t > s,

W1(δxP
X
s,t, π) ≤ C∗(x) e−λ∗(t−s) .
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Application: Long time behavior of inhomogeneous SDEs

with jumps

Theorem 2

Assume that (A1) and (C) hold. Then, for all x ∈ Rd and t > s ≥ 0,

W1(δxP
X
s,t, π) ≤ C(x) e−λ(t−s) +

1 + c∗

2c∗

[
‖φ‖∞W (x) e−λ(t−s)(e(λ−θ)(t−s)−1)

λ− θ

+
c0
θ

∫ t

s

φ(r) e−λ(t−r) dr

]
,

where π is the unique invariant probability measure of the process (Xt)t≥0. In

particular,

W1(δxP
X
s,t, π)→ 0, t→∞.

Furthermore, if φ(t) = c1 e
−λ0t for some constants c1, λ0 > 0, then for any

0 < λ∗ < min{λ, λ0, θ}, x ∈ Rd and t > s,

W1(δxP
X
s,t, π) ≤ C∗(x) e−λ∗(t−s) .

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 18 / 25



Application: Exponential ergodicity of McKean-Vlasov

SDEs with partially dissipative drift

Consider the following McKean-Vlasov SDE

dXt = b(Xt,LXt) dt+ dZt

so that

(B1) the Lévy measure ν satisfies Assumption (A1)(ii) and
∫
{|z|>1} |z| ν(dz) <

∞.

(B2) there exist constants K1, `0 ≥ 0 and K2 > 0 such that for all µ ∈ P(Rd)
and x, y ∈ Rd,

〈x− y, b(x, µ)− b(y, µ)〉 ≤
(
K11{|x−y|≤`0} −K21{|x−y|>`0}

)
|x− y|2,

and there exists a constant L0 ≥ 0 such that for all µ, ν ∈ P1(Rd) and

x ∈ Rd,
|b(x, µ)− b(x, ν)| ≤ L0W1(µ, ν).
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Application: Exponential ergodicity of McKean-Vlasov

SDEs with partially dissipative drift

Theorem 3

Assume that (B1) and (B2) hold. Then, for all t ≥ 0 and µ, µ̂ ∈P1(Rd),

W1(µt, µ̂t) ≤
1 + c∗

2c∗
e−
(
λ− (1+c∗)L0

2c∗

)
tW1(µ, µ̂).
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Coupling approach

• Consider the following SDE{
dX̃t = bt(X̃t) dt+ dZt

dỸ ν̃,κt = b̃t(Ỹ
ν̃,κ
t ) dt+ dZt +

∫
Rd×[0,1] U

ν̃((X̃t− − Ỹ ν̃,κt− ), z, u)N(dt, dz,du)

has a unique strong solution (X̃t, Ỹ
ν̃,κ
t )t≥0, where for x, z ∈ Rd and u ∈ [0, 1],

U ν̃(x, z, u) := x
(
1{u≤ 1

2ρ
ν̃(−x,z)} − 1{ 1

2ρ
ν̃(−x,z)<u≤ 1

2 (ρ
ν̃(−x,z)+ρν̃(x,z))}

)
with ρν̃(x, z) := ν̃x(dz)

ν(dz) ∈ [0, 1].

• Luo, D. and Wang, J.: Refined couplings and Wasserstein-type distances for SDEs with Lévy noises, Stoch. Process. Appl.,

129 (2019), 3129–3173.

• Liang, M., Majka, M.B. and Wang, J.: Exponential ergodicity for SDEs and McKean-Vlasov processes with Lévy noise, Ann.

Inst. Henri Poincaré Probab. Stat., 57 (2021), 1665–1701.
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Coupling approach

• For any t ≥ s,

dψ(|rt|) =
ψ′(|rt|)
|rt|

〈rt, bt(X̃t)− b̃t(Ỹ ν,κt )〉1{rt 6=0} dt

+
1

2
ν(rt)κ(R

d)
(
ψ(|rt|+ κ ∧ |rt|) + ψ(|rt| − κ ∧ |rt|)− 2ψ(|rt|)

)
dt

+ dMs,t

for some martingale (Ms,t)t≥s.

•
〈rt, bt(X̃t)− b̃t(Ỹ ν,κt )〉

• Coupling time does not make sense in this setting.
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Proof: application 2

Consider the McKean-Vlasov SDE

dXt = b(Xt,LXt) dt+ dZt.

Denote µt := LXt with LX0 = µ ∈ P1(Rd) and µ̂t := LXt with LX0 = µ̂ ∈
P1(Rd). Consider the following two SDEs: for µ, µ̂ ∈P1(Rd),

dY µt = b(Y µt , µt) dt+ dZt, LY µ0
= µ,

and

dY µ̂t = b(Y µ̂t , µ̂t) dt+ dZt, LY µ̂0
= µ̂.

Let

bt(x) = bµt (x) := b(x, µt), b̃t(x) = bµ̂t (x) = b(x, µ̂t), x ∈ Rd, t ≥ 0.

Thus, two SDEs above can be reformulated into our framework. The SDE above

is called the decoupled SDE associated with the McKean-Vlasov SDE.
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Remark: total variation

• For any t ≥ s,

dψ(|rt|) =
ψ′(|rt|)
|rt|

〈rt, bt(X̃t)− b̃t(Ỹ ν,κt )〉1{rt 6=0} dt

+
1

2
ν(rt)κ(R

d)
(
ψ(|rt|+ κ ∧ |rt|) + ψ(|rt| − κ ∧ |rt|)− 2ψ(|rt|)

)
dt+ · · ·

• Lévy kernel µ(r, dz) associated with the coupling process is given by

µ(r, dz) =
1

2
µr(Rd)

(
δr(dz) + δ−r(dz)

)
, r ≥ 0.

• Let L be the Lévy-type operator expressed as follows: for h ∈ C2
b (R) and r ≥ 0,

(L h)(r) = h′(r)(φ(r) +M) +

∫
R

(
h(r + z)− h(r)

)
µ(r, dz).

where φ(r) := K11{0≤r≤`0} −K2r1{r>`0}, and the Lévy measure µ fulfils

µ(r, [x,∞)) ≥ 1{0≤x≤r}µx(Rd), r ≥ 0, x ≥ 0; µ(r, (−∞, x)) = 0, r ≥ 0, x < 0.

Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 24 / 25
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Thank you!
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