Quantitative estimates for Lévy driven SDEs with different drifts and applications

Jian Wang (Fujian Normal University)

Joint with Jianhai Bao, Xiaobin Sun and Yingchao Xie

February 25, 2023

×

活

重

∍ × \rightarrow

4 ロト 4 何 ト 4

 2990

Consider one-dimensional O-U process:

$$
\mathrm{d}X_t = -X_t \,\mathrm{d}t + \mathrm{d}B_t.
$$

It is known that X_t exponentially converges to $\pi := N(0, 1/2)$ as $t \to \infty$.

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty}W_2(P(s,x;t,\cdot),\pi)=0.$

 -1 -1

Consider one-dimensional O-U process:

$$
\mathrm{d}X_t = -X_t \,\mathrm{d}t + \mathrm{d}B_t.
$$

It is known that X_t exponentially converges to $\pi := N(0, 1/2)$ as $t \to \infty$.

Question:

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty}W_2(P(s,x;t,\cdot),\pi)=0.$

Consider one-dimensional O-U process:

$$
\mathrm{d}X_t = -X_t \,\mathrm{d}t + \mathrm{d}B_t.
$$

It is known that X_t exponentially converges to $\pi := N(0, 1/2)$ as $t \to \infty$.

Question:

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

$$
\lim_{t \to \infty} W_2(P(s, x; t, \cdot), \pi) = 0.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty} W_2(P(s,x;t,\cdot),\pi) = 0.$

Strong ergodicity:

$$
\sup_{x \in \mathbb{R}} \|P(t, x, \cdot) - \pi\|_{\text{Var}} \le Ce^{-\lambda t}.
$$

Nonhomogeneous Markov chain: Isofescu (1980/2007): Finite Markov chains and their applications.

$$
\lim_{t \to \infty} ||P(s, x; t, \cdot) - \pi||_{\text{Var}} = 0.
$$

Note: In general we cannot hope to find a single invariant measure. $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

 Ω

イロメ イ母メ イヨメ イヨ

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty} W_2(P(s,x;t,\cdot),\pi) = 0.$

Strong ergodicity:

$$
\sup_{x \in \mathbb{R}} \|P(t, x, \cdot) - \pi\|_{\text{Var}} \le Ce^{-\lambda t}.
$$

Nonhomogeneous Markov chain: Isofescu (1980/2007): Finite Markov chains and their applications.

$$
\lim_{t \to \infty} ||P(s, x; t, \cdot) - \pi||_{\text{Var}} = 0.
$$

Note: In general we cannot hope to find a single invariant measure. $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

 Ω

イロメ イ母メ イヨメ イヨ

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty} W_2(P(s,x;t,\cdot),\pi) = 0.$

Strong ergodicity:

$$
\sup_{x \in \mathbb{R}} \|P(t, x, \cdot) - \pi\|_{\text{Var}} \le Ce^{-\lambda t}.
$$

Nonhomogeneous Markov chain: Isofescu (1980/2007): Finite Markov chains and their applications.

$$
\lim_{t \to \infty} ||P(s, x; t, \cdot) - \pi||_{\text{Var}} = 0.
$$

Note: In general we cannot hope to find a single invariant measure. $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

 QQ

K ロ ト K 何 ト K ヨ ト K ヨ

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty} W_2(P(s,x;t,\cdot),\pi) = 0.$

Strong ergodicity:

$$
\sup_{x \in \mathbb{R}} \|P(t, x, \cdot) - \pi\|_{\text{Var}} \le Ce^{-\lambda t}.
$$

Nonhomogeneous Markov chain: Isofescu (1980/2007): Finite Markov chains and their applications.

$$
\lim_{t \to \infty} ||P(s, x; t, \cdot) - \pi||_{\text{Var}} = 0.
$$

Note: In general we cannot hope to find a single invariant measure. $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

Note: $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

Example: Time-dependent stable-like process

$$
\mathcal{L}_t f(x) = \text{p.v.} \int_{\mathbb{R}^d} (f(x+z) - f(x)) K(t,x,z) \frac{1}{|z|^{d+\alpha}} dz,
$$

where for every $t > 0$, $K(t, \cdot, \cdot)$ is multivariate 1-periodic.

$$
\sup_{x \in \mathbb{R}^d} |P_{s,t}f(x) - \mu_s(f)| \le c_0 e^{-c_1(t-s)} \|f\|_{\infty}.
$$

4 D F

Note: $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

Example: Time-dependent stable-like process

$$
\mathcal{L}_t f(x) = \text{p.v.} \int_{\mathbb{R}^d} (f(x+z) - f(x)) K(t, x, z) \frac{1}{|z|^{d+\alpha}} dz,
$$

where for every $t > 0$, $K(t, \cdot, \cdot)$ is multivariate 1-periodic.

$$
\sup_{x \in \mathbb{R}^d} |P_{s,t}f(x) - \mu_s(f)| \le c_0 e^{-c_1(t-s)} \|f\|_{\infty}.
$$

4 D F

Note: $(\pi_s)_{s>0}$ is a system of invariant measures (Da Prato-Röckner, 08):

$$
\int_{\mathbb{R}} P_{s,t} f(x) \, \pi_t(\mathrm{d}x) = \int_{\mathbb{R}} f(x) \, \pi_s(\mathrm{d}x), \quad s \leq t.
$$

Example: Time-dependent stable-like process

$$
\mathcal{L}_t f(x) = \text{p.v.} \int_{\mathbb{R}^d} (f(x+z) - f(x)) K(t, x, z) \frac{1}{|z|^{d+\alpha}} dz,
$$

where for every $t > 0$, $K(t, \cdot, \cdot)$ is multivariate 1-periodic.

$$
\sup_{x \in \mathbb{R}^d} |P_{s,t}f(x) - \mu_s(f)| \le c_0 e^{-c_1(t-s)} \|f\|_{\infty}.
$$

4 D F

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

 $\lim_{t\to\infty} W_2(P(s,x;t,\cdot),\pi) = 0.$

Question: Convergence rate?

Question: Beyond the variant of O-U process?

 -1 -1

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

$$
\lim_{t \to \infty} W_2(P(s, x; t, \cdot), \pi) = 0.
$$

Question: Convergence rate?

Question: Beyond the variant of O-U process?

 -1 -1

$$
dX_t = ((1+t)^{-1} - 1)X_t dt + dB_t.
$$

It can be proved that the process X_t is W_2 -strongly ergodic in the sense that

$$
\lim_{t \to \infty} W_2(P(s, x; t, \cdot), \pi) = 0.
$$

 \blacksquare

Question: Convergence rate?

Question: Beyond the variant of O-U process?

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

$$
X_{s,t} = e^{-(t-s)}x + \int_s^t e^{-(t-u)}\phi(u) \, \mathrm{d}u + \int_s^t e^{-(t-u)} \mathrm{d}B_u.
$$

$$
(\delta_x P_{s,t})(dy) = \frac{1}{\sqrt{\pi (1 - e^{-2(t-s)})}} exp\left(-\frac{\left(y - e^{-(t-s)}x - \int_s^t e^{-(t-u)}\phi(u) du\right)^2}{1 - e^{-2(t-s)}}\right) dy
$$

Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal distributions, J. Multivariate Anal., 12 (1982), 450-455.

$$
\mathbb{W}_2(\delta_x P_{s,t}, \delta_y P_{s,t}) = e^{s-t}|x-y|.
$$

 Ω

4 D F

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

$$
X_{s,t} = e^{-(t-s)}x + \int_s^t e^{-(t-u)}\phi(u) \, \mathrm{d}u + \int_s^t e^{-(t-u)} \mathrm{d}B_u.
$$

$$
(\delta_x P_{s,t})(dy) = \frac{1}{\sqrt{\pi (1 - e^{-2(t-s)})}} exp\left(-\frac{\left(y - e^{-(t-s)}x - \int_s^t e^{-(t-u)}\phi(u) du\right)^2}{1 - e^{-2(t-s)}}\right) dy
$$

Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal distributions, J. Multivariate Anal., 12 (1982), 450-455.

$$
\mathbb{W}_2(\delta_x P_{s,t}, \delta_y P_{s,t}) = e^{s-t}|x-y|.
$$

4 D F

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

$$
X_{s,t} = e^{-(t-s)}x + \int_s^t e^{-(t-u)}\phi(u) du + \int_s^t e^{-(t-u)} dB_u.
$$

$$
(\delta_x P_{s,t})(dy) = \frac{1}{\sqrt{\pi(1 - e^{-2(t-s)})}} \exp\left(-\frac{\left(y - e^{-(t-s)}x - \int_s^t e^{-(t-u)}\phi(u) du\right)^2}{1 - e^{-2(t-s)}}\right) dy
$$

Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal distributions, J. Multivariate Anal., 12 (1982), 450-455.

$$
\mathbb{W}_2(\delta_x P_{s,t}, \delta_y P_{s,t}) = e^{s-t}|x-y|.
$$

4 D F

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

$$
X_{s,t} = e^{-(t-s)}x + \int_s^t e^{-(t-u)}\phi(u) du + \int_s^t e^{-(t-u)} dB_u.
$$

$$
(\delta_x P_{s,t})(dy) = \frac{1}{\sqrt{\pi(1 - e^{-2(t-s)})}} \exp\left(-\frac{\left(y - e^{-(t-s)}x - \int_s^t e^{-(t-u)}\phi(u) du\right)^2}{1 - e^{-2(t-s)}}\right) dy
$$

$$
\sqrt{\pi}(1-e^{-2(e-s)})
$$

Dowson, D.C. and Landau, B.V.: The Fréchet distance between multivariate normal distributions, J. Multivariate Anal., 12 (1982), 450-455.

$$
\mathbb{W}_2(\delta_x P_{s,t}, \delta_y P_{s,t}) = e^{s-t}|x-y|.
$$

 Ω

イロメ イ母メ イヨメ イヨ

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

When $\lim_{t\to\infty}\phi(t)=0$, the limit process is expected to be

$$
dY_t = -Y_t dt + dB_t, \quad t \ge s, \quad Y_s = x.
$$

 $\mathbb{W}_2(\delta_x P_{s,t}, \pi)^2 = e^{-2(t-s)}x^2 + 2e^{-(t-s)}x\int_0^t$ s $e^{-(t-u)}\phi(u)\,\mathrm{d}u$ $+$ $\int_s^t e^{-(t-u)}\phi(u)\,\mathrm{d} u\Big|$ s 2 $+\frac{1}{2}$ 2 $\left(1 - \left(1 - e^{-2(t-s)}\right)^{1/2}\right)^2$.

One-dimensional time-inhomogeneous process

$$
dX_{s,t} = (\phi(t) - X_{s,t}) dt + dB_t, \quad t \ge s \ge 0, \quad X_{s,s} = x.
$$

When $\lim_{t\to\infty}\phi(t)=0$, the limit process is expected to be

$$
dY_t = -Y_t dt + dB_t, \quad t \ge s, \quad Y_s = x.
$$

4 D F

Long-time behavior of time-inhomogeneous SDEs

Consider one-dimensional time-inhomogeneous process:

$$
dX_t = (\phi(t) - X_t) dt + dZ_t,
$$

where $\phi : [0, \infty) \to [0, \infty)$ and $(Z_t)_{t>0}$ is a one-dimensional Lévy process.

If $\lim_{t\to\infty}\phi(t)=0$, then it is naturally expected that the process $(X_t)_{t>0}$ above enjoys the same long time behavior as that of the time-homogeneous O-U process

$$
\mathrm{d}\overline{X}_t = -\overline{X}_t \,\mathrm{d}t + \mathrm{d}Z_t.
$$

It is well known that the process $(\overline{X}_t)_{t>0}$ admits a unique invariant probability measure, written as π , and it converges exponentially to π .

Subsequently, a spontaneous question one might ask is that, under what conditions, the transition kernel of the time-inhomogeneous process $(X_t)_{t\geq0}$ will converge to the invariant probability measure π .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Long-time behavior of time-inhomogeneous SDEs

Consider one-dimensional time-inhomogeneous process:

$$
dX_t = (\phi(t) - X_t) dt + dZ_t,
$$

where $\phi : [0, \infty) \to [0, \infty)$ and $(Z_t)_{t>0}$ is a one-dimensional Lévy process.

If $\lim_{t\to\infty}\phi(t)=0$, then it is naturally expected that the process $(X_t)_{t>0}$ above enjoys the same long time behavior as that of the time-homogeneous O-U process

$$
\mathrm{d}\overline{X}_t = -\overline{X}_t \,\mathrm{d}t + \mathrm{d}Z_t.
$$

It is well known that the process $(\overline{X}_t)_{t>0}$ admits a unique invariant probability measure, written as π , and it converges exponentially to π .

Subsequently, a spontaneous question one might ask is that, under what conditions, the transition kernel of the time-inhomogeneous process $(X_t)_{t\geq0}$ will converge to the invariant probability measure π .

Ergodicity of the McKean-Vlasov SDE

Consider

$$
\mathrm{d}X_t = b(X_t, \mathscr{L}_{X_t}) \, \mathrm{d}t + \mathrm{d}Z_t,
$$

where \mathscr{L}_{X_t} means the law of X_t and $(Z_t)_{t\geq0}$ is a d-dimensional Lévy process. Due to the intervention of the measure variable, the solution process $(X_t)_{t\geq0}$ is a nonlinear Markov process whose transition kernel may depend not only on the current state of the process but also on the current distribution of the process.

Provided that the McKean-Vlasov SDE is weakly wellposed, the weak solution $(X_t)_{t\geq0}$ shares the same distribution as that of the corresponding decoupled SDE

$$
dY_t^{\mu} = b(Y_t^{\mu}, \mu_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\mu}} = \mu,
$$

where $\mu_t := \mathscr{L}_{X_t}$ with the initial distribution $\mathscr{L}_{Y_0} = \mu$. That is, we have $\mathscr{L}_{X_t} =$ $\mathscr{L}_{Y^\mu_t}$ when $\mathscr{L}_{X_0} = \mathscr{L}_{Y^\mu_0} = \mu.$

Therefore, the exploration on the McKean-Vlasov SDE amounts to the counterpart of the corresponding decoupled SDE. Note that the drifts of the decoupled SDEs are not the same once the initial distributions involv[ed](#page-22-0) [are](#page-24-0)[di](#page-23-0)[ff](#page-25-0)[e](#page-26-0)[ren](#page-0-0)[t.](#page-49-0) \equiv 990 Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 11 / 25

Ergodicity of the McKean-Vlasov SDE

Consider

$$
\mathrm{d}X_t = b(X_t, \mathscr{L}_{X_t}) \, \mathrm{d}t + \mathrm{d}Z_t,
$$

where \mathscr{L}_{X_t} means the law of X_t and $(Z_t)_{t>0}$ is a d-dimensional Lévy process. Due to the intervention of the measure variable, the solution process $(X_t)_{t\geq0}$ is a nonlinear Markov process whose transition kernel may depend not only on the current state of the process but also on the current distribution of the process.

Provided that the McKean-Vlasov SDE is weakly wellposed, the weak solution $(X_t)_{t\geq0}$ shares the same distribution as that of the corresponding decoupled SDE

$$
dY_t^{\mu} = b(Y_t^{\mu}, \mu_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\mu}} = \mu,
$$

where $\mu_t := \mathscr{L}_{X_t}$ with the initial distribution $\mathscr{L}_{Y_0} = \mu$. That is, we have $\mathscr{L}_{X_t} =$ $\mathscr{L}_{Y^\mu_t}$ when $\mathscr{L}_{X_0} = \mathscr{L}_{Y^\mu_0} = \mu.$

Therefore, the exploration on the McKean-Vlasov SDE amounts to the counterpart of the corresponding decoupled SDE. Note that the drifts of the decoupled SDEs are not the same once the initial distributions involv[ed](#page-23-0) [are](#page-25-0)[di](#page-23-0)[ff](#page-25-0)[e](#page-26-0)[ren](#page-0-0)[t.](#page-49-0) $E = 990$ Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 11 / 25

Ergodicity of the McKean-Vlasov SDE

Consider

$$
\mathrm{d}X_t = b(X_t, \mathscr{L}_{X_t}) \, \mathrm{d}t + \mathrm{d}Z_t,
$$

where \mathscr{L}_{X_t} means the law of X_t and $(Z_t)_{t>0}$ is a d-dimensional Lévy process. Due to the intervention of the measure variable, the solution process $(X_t)_{t>0}$ is a nonlinear Markov process whose transition kernel may depend not only on the current state of the process but also on the current distribution of the process.

Provided that the McKean-Vlasov SDE is weakly wellposed, the weak solution $(X_t)_{t\geq0}$ shares the same distribution as that of the corresponding decoupled SDE

$$
dY_t^{\mu} = b(Y_t^{\mu}, \mu_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\mu}} = \mu,
$$

where $\mu_t := \mathscr{L}_{X_t}$ with the initial distribution $\mathscr{L}_{Y_0} = \mu$. That is, we have $\mathscr{L}_{X_t} =$ $\mathscr{L}_{Y^\mu_t}$ when $\mathscr{L}_{X_0} = \mathscr{L}_{Y^\mu_0} = \mu.$

Therefore, the exploration on the McKean-Vlasov SDE amounts to the counterpart of the corresponding decoupled SDE. Note that the drifts of the decoupled SDEs are not the same once the initial distributions involv[ed](#page-24-0) [are](#page-26-0)[di](#page-23-0)[ff](#page-25-0)[e](#page-26-0)[ren](#page-0-0)[t.](#page-49-0) \geq QQ

Setting

In this talk, we are interested in the following SDEs on \mathbb{R}^d :

 $dX_t = b_t(X_t) dt + dZ_t,$

and

$$
dY_t = \tilde{b}_t(Y_t) dt + dZ_t,
$$

where $b,\tilde{b}:[0,\infty)\times\mathbb{R}^d\to\mathbb{R}^d$ are measurable, and $(Z_t)_{t\geq0}$ is a d -dimensional pure iump Lévy process with the Lévy measure ν .

• Eberle, A. and Zimmer, R.: Sticky couplings of multidimensional diffusions with different drifts, Ann. Inst. Henri Poincaré

• Lefter, M., Šiška, D. and Szpruch, L.: Decaying derivative estimates for functions of solutions to non-autonomous SDEs,

• Suzuki, K.: Weak convergence of approximate reflection coupling and its application to non-convex optimization,

イロト イ押ト イヨト イヨト

 QQ

÷

Setting

In this talk, we are interested in the following SDEs on \mathbb{R}^d :

 $dX_t = b_t(X_t) dt + dZ_t,$

and

$$
dY_t = \tilde{b}_t(Y_t) dt + dZ_t,
$$

where $b,\tilde{b}:[0,\infty)\times\mathbb{R}^d\to\mathbb{R}^d$ are measurable, and $(Z_t)_{t\geq0}$ is a d -dimensional pure iump Lévy process with the Lévy measure ν .

• Eberle, A. and Zimmer, R.: Sticky couplings of multidimensional diffusions with different drifts, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), 2370–2394.

• Lefter, M., Šiška, D. and Szpruch, L.: Decaying derivative estimates for functions of solutions to non-autonomous SDEs, arXiv:2207.1287

• Suzuki, K.: Weak convergence of approximate reflection coupling and its application to non-convex optimization,

arXiv:2205.11970

イロト イ押ト イヨト イヨト

 \equiv Ω

Assumptions

For the drift $b_t(x)$ and the Lévy measure $\nu(\mathrm{d}z)$, we assume that

 (A_1) (i) there exist constants $K_1, \ell_0 \geq 0$ and $K_2 > 0$ such that for all $t \geq 0$ and $x,y \in \mathbb{R}^d$,

$$
\langle x-y, b_t(x)-b_t(y)\rangle \le (K_1 1_{\{|x-y|\le \ell_0\}} - K_2 1_{\{|x-y| > \ell_0\}})|x-y|^2.
$$

(ii) there exist a constant $\kappa > 0$ and a nondecreasing and concave function $\sigma \in C([0,2\ell_0]; \mathbb{R}_+) \cap C^2((0,2\ell_0]; \mathbb{R}_+)$ such that $[0,2\ell_0] \ni r \mapsto$ $\int_0^r \frac{1}{\sigma(s)} ds$ is integrable, and

$$
\sigma(r) \le \frac{1}{2r} J^{\nu}(r \wedge \kappa)(\kappa \wedge r)^2, \quad r \in (0, 2\ell_0],
$$

where

$$
J^{\nu}(s) := \inf_{x \in \mathbb{R}^d, |x| \le s} \left(\nu \wedge (\delta_x * \nu) \right) (\mathbb{R}^d), \quad s > 0.
$$

Assumptions

For the drift $b_t(x)$ and the Lévy measure $\nu(\mathrm{d}z)$, we assume that

 (A_1) (i) there exist constants $K_1, \ell_0 \geq 0$ and $K_2 > 0$ such that for all $t \geq 0$ and $x,y \in \mathbb{R}^d$,

$$
\langle x-y, b_t(x)-b_t(y)\rangle \le (K_1 1_{\{|x-y|\le \ell_0\}} - K_2 1_{\{|x-y| > \ell_0\}})|x-y|^2.
$$

(ii) there exist a constant $\kappa > 0$ and a nondecreasing and concave function $\sigma \in C([0, 2\ell_0]; \mathbb{R}_+) \cap C^2((0, 2\ell_0]; \mathbb{R}_+)$ such that $[0, 2\ell_0] \ni r \mapsto$ $\int_0^r \frac{1}{\sigma(s)} ds$ is integrable, and

$$
\sigma(r) \le \frac{1}{2r} J^{\nu}(r \wedge \kappa)(\kappa \wedge r)^2, \quad r \in (0, 2\ell_0],
$$

where

$$
J^{\nu}(s):=\inf_{x\in\mathbb{R}^d,|x|\leq s}\big(\nu\wedge(\delta_x*\nu)\big)(\mathbb{R}^d),\quad s>0.
$$

 (\mathbf{A}_2) there exist a C^2 -function $W:\mathbb{R}^d\to [0,\infty)$, locally integrable functions $\phi_1, \phi_2, \phi_3 : [0, \infty) \to [0, \infty)$ and a locally integrable function $\lambda_W : [0, \infty) \to$ $\mathbb R$ such that for all $t\geq 0$ and $x\in \mathbb R^d,$

$$
|b_t(x) - \tilde{b}_t(x)| \le \phi_1(t) + \phi_2(t)W(x),
$$

and

$$
(\mathscr{L}_t^{\tilde{b}} W)(x) \le \phi_3(t) + \lambda_W(t)W(x),
$$

where $\mathscr{L}^{\tilde{b}}_t$ means the infinitesimal generator of $(Y_t)_{t\geq 0}.$

Main result

Theorem 1

Assume that $(\mathbf{A_1})$ and $(\mathbf{A_2})$ hold. Then, for all $t>s$ and $x,y\in \mathbb{R}^d$,

$$
\mathbb{W}_{1}(\delta_{x}P_{s,t}^{X},\delta_{y}P_{s,t}^{Y})
$$
\n
$$
\leq \frac{1+c^{*}}{2c^{*}}\bigg[e^{-\lambda(t-s)}\,|x-y| + \int_{s}^{t}e^{-\lambda(t-r)}\,\phi_{1}(r)\,\mathrm{d}r
$$
\n
$$
+ \int_{s}^{t}\phi_{2}(r)\,\mathrm{e}^{-\lambda(t-r)}\,\Big(\,\mathrm{e}^{\int_{s}^{r}\lambda_{W}(u)\,\mathrm{d}u}\,W(y) + \int_{s}^{r}\phi_{3}(u)\,\mathrm{e}^{\int_{u}^{r}\lambda_{W}(v)\,\mathrm{d}v}\,\mathrm{d}u\Big)\,\mathrm{d}r\bigg],
$$

where

$$
c^* := e^{-g(2\ell_0)}, \quad \lambda := \frac{(1 \wedge (2K_2))c^*}{1+c^*}, \quad g(2\ell_0) := (1+2K_1) \int_0^{2\ell_0} \frac{1}{\sigma(s)} ds.
$$

4 D F

∢ 何 ≯ →

 299

活

Corollary 1

Consider the time-homogeneous versions of two SDEs above. Assume that (A_1) and (\mathbf{A}_2) hold with $\lambda_W(t) \equiv \lambda_W < 0$, $\phi_1(t) \equiv \kappa_1, \phi_2(t) \equiv \kappa_2$, and $\phi_3(t) \equiv C_W$ for some constants $C_W, \kappa_1, \kappa_2 > 0$. Then for all $t > 0$ and $x, y \in \mathbb{R}^d$,

$$
\mathbb{W}_1(\delta_x P_t^X, \delta_y P_t^Y) \le \frac{1 + c^*}{2c^*} \left\{ e^{-\lambda t} |x - y| + \lambda^{-1} (\kappa_1 - \kappa_2 C_W / \lambda_W) (1 - e^{-\lambda t}) + \kappa_2 e^{\lambda_W t} W(y) \left[\frac{1}{\lambda + \lambda_W} (1 - e^{-(\lambda + \lambda_W)t}) \right] \right\}.
$$

Let $(X_t)_{t>0}$ be the unique strong solution to the time-inhomogeneous SDE, which fulfills Assumption (A_1) . Assume that the following time-homogeneous SDE on \mathbb{R}^d :

$$
\mathrm{d}\overline{X}_t = \overline{b}(\overline{X}_t) \,\mathrm{d}t + \mathrm{d}Z_t
$$

with $\bar b: \mathbb{R}^d \to \mathbb{R}^d$ has a unique strong solution, which is denoted by $(\overline{X}_t)_{t\geq 0}.$ We assume that

(C) there are a C^2 -function $W : \mathbb{R}^d \to [0,\infty)$ and a bounded function ϕ : $[0, \infty) \mapsto [0, \infty)$ that satisfies $\lim_{t\to\infty} \phi(t) = 0$, so that for all $x \in \mathbb{R}^d$ and $t \geq 0$,

 $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$ $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$ $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$ $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$ $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$ $(\overline{\mathscr{L}}^b W)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.$

and there are constants $c_0, \theta > 0$ such that

Let $(X_t)_{t>0}$ be the unique strong solution to the time-inhomogeneous SDE, which fulfills Assumption (A_1) . Assume that the following time-homogeneous SDE on \mathbb{R}^d :

$$
\mathrm{d}\overline{X}_t = \overline{b}(\overline{X}_t) \,\mathrm{d}t + \mathrm{d}Z_t
$$

with $\bar b: \mathbb{R}^d \to \mathbb{R}^d$ has a unique strong solution, which is denoted by $(\overline{X}_t)_{t\geq 0}.$ We assume that

(C) there are a C^2 -function $W : \mathbb{R}^d \to [0,\infty)$ and a bounded function ϕ : $[0, \infty) \mapsto [0, \infty)$ that satisfies $\lim_{t\to\infty} \phi(t) = 0$, so that for all $x \in \mathbb{R}^d$ and $t \geq 0$, $|b_t(x) - \overline{b}(x)| \leq \phi(t)W(x)$

and there are constants $c_0, \theta > 0$ such that

$$
\left(\overline{\mathscr{L}}^{\overline{b}}W\right)(x) \leq c_0 - \theta W(x), \quad x \in \mathbb{R}^d.
$$

Theorem 2

Assume that (\mathbf{A}_1) and (\mathbf{C}) hold. Then, for all $x\in\mathbb{R}^d$ and $t>s\geq 0$,

$$
\mathbb{W}_1(\delta_x P_{s,t}^X, \pi) \le C(x) e^{-\lambda(t-s)} + \frac{1 + c^*}{2c^*} \left[\frac{\|\phi\|_{\infty} W(x) e^{-\lambda(t-s)} (e^{(\lambda - \theta)(t-s)} - 1)}{\lambda - \theta} + \frac{c_0}{\theta} \int_s^t \phi(r) e^{-\lambda(t-r)} dr \right],
$$

where π is the unique invariant probability measure of the process $(\overline{X}_t)_{t>0}$. In particular,

$$
\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \to 0, \quad t \to \infty.
$$

Furthermore, if $\phi(t) = c_1 e^{-\lambda_0 t}$ for some constants $c_1, \lambda_0 > 0$, then for any $0 < \lambda_* < \min\{\lambda, \lambda_0, \theta\}$, $x \in \mathbb{R}^d$ and $t > s$,

 $\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \leq C_*(x) e^{-\lambda_*(t-s)}.$ $\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \leq C_*(x) e^{-\lambda_*(t-s)}.$

Theorem 2

Assume that (\mathbf{A}_1) and (\mathbf{C}) hold. Then, for all $x\in\mathbb{R}^d$ and $t>s\geq 0$,

$$
\mathbb{W}_1(\delta_x P_{s,t}^X, \pi) \le C(x) e^{-\lambda(t-s)} + \frac{1 + c^*}{2c^*} \left[\frac{\|\phi\|_{\infty} W(x) e^{-\lambda(t-s)} (e^{(\lambda - \theta)(t-s)} - 1)}{\lambda - \theta} + \frac{c_0}{\theta} \int_s^t \phi(r) e^{-\lambda(t-r)} dr \right],
$$

where π is the unique invariant probability measure of the process $(\overline{X}_t)_{t>0}$. In particular,

$$
\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \to 0, \quad t \to \infty.
$$

Furthermore, if $\phi(t) = c_1 e^{-\lambda_0 t}$ for some constants $c_1, \lambda_0 > 0$, then for any $0 < \lambda_* < \min\{\lambda, \lambda_0, \theta\}$, $x \in \mathbb{R}^d$ and $t > s$,

 $\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \leq C_*(x) e^{-\lambda_*(t-s)}.$ $\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \leq C_*(x) e^{-\lambda_*(t-s)}.$

Theorem 2

Assume that (\mathbf{A}_1) and (\mathbf{C}) hold. Then, for all $x\in\mathbb{R}^d$ and $t>s\geq 0$,

$$
\mathbb{W}_1(\delta_x P_{s,t}^X, \pi) \le C(x) e^{-\lambda(t-s)} + \frac{1 + c^*}{2c^*} \left[\frac{\|\phi\|_{\infty} W(x) e^{-\lambda(t-s)} (e^{(\lambda - \theta)(t-s)} - 1)}{\lambda - \theta} + \frac{c_0}{\theta} \int_s^t \phi(r) e^{-\lambda(t-r)} dr \right],
$$

where π is the unique invariant probability measure of the process $(\overline{X}_t)_{t>0}$. In particular,

$$
\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \to 0, \quad t \to \infty.
$$

Furthermore, if $\phi(t)\,=\,c_1\,{\rm e}^{-\lambda_0 t}$ for some constants $c_1,\lambda_0\,>\,0$, then for any $0 < \lambda_* < \min\{\lambda, \lambda_0, \theta\}$, $x \in \mathbb{R}^d$ and $t > s$,

$$
\mathbb{W}_1(\delta_x P^X_{s,t}, \pi) \le C_*(x) e^{-\lambda_*(t-s)}.
$$

Application: Exponential ergodicity of McKean-Vlasov SDEs with partially dissipative drift

Consider the following McKean-Vlasov SDE

$$
\mathrm{d}X_t = b(X_t, \mathscr{L}_{X_t}) \, \mathrm{d}t + \mathrm{d}Z_t
$$

so that

- (B_1) the Lévy measure ν satisfies Assumption $({\bf A}_1)($ ii) and $\int_{\{|z|>1\}}|z|\,\nu(\mathrm{d} z)<$ ∞.
- (\mathbf{B}_2) there exist constants $K_1, \ell_0 \geq 0$ and $K_2 > 0$ such that for all $\mu \in \mathscr{P}(\mathbb{R}^d)$ and $x,y \in \mathbb{R}^d$,

$$
\langle x-y, b(x,\mu)-b(y,\mu) \rangle \le (K_1 1_{\{|x-y| \le \ell_0\}} - K_2 1_{\{|x-y| > \ell_0\}})|x-y|^2,
$$

and there exists a constant $L_0\geq 0$ such that for all $\mu,\nu\in \mathscr{P}_1(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$,

$$
|b(x,\mu)-b(x,\nu)|\leq L_0\mathbb{W}_{1}(\underline{\mu},\nu)_{\mathbb{B}^{\frac{1}{p}+\frac{1}{2}}\leq \frac{1}{2}}\quad \text{as}\quad
$$

Application: Exponential ergodicity of McKean-Vlasov SDEs with partially dissipative drift

Theorem 3

Assume that (\mathbf{B}_1) and (\mathbf{B}_2) hold. Then, for all $t\geq 0$ and $\mu,\hat\mu\in\mathscr{P}_1(\mathbb{R}^d),$

$$
\mathbb{W}_1(\mu_t,\hat{\mu}_t) \leq \frac{1+c^*}{2c^*}\,\mathrm{e}^{-\left(\lambda - \frac{(1+c^*)L_0}{2c^*}\right)t}\,\mathbb{W}_1(\mu,\hat{\mu}).
$$

• Consider the following SDE

$$
\begin{cases} \mathrm{d}\tilde{X}_t = b_t(\tilde{X}_t) \,\mathrm{d}t + \mathrm{d}Z_t \\ \mathrm{d}\tilde{Y}_t^{\tilde{\nu},\kappa} = \tilde{b}_t(\tilde{Y}_t^{\tilde{\nu},\kappa}) \,\mathrm{d}t + \mathrm{d}Z_t + \int_{\mathbb{R}^d \times [0,1]} U^{\tilde{\nu}}((\tilde{X}_{t-} - \tilde{Y}_{t-}^{\tilde{\nu},\kappa}), z, u)N(\mathrm{d}t, \mathrm{d}z, \mathrm{d}u) \end{cases}
$$

has a unique strong solution $(\tilde{X}_t, \tilde{Y}^{\tilde{\nu}, \kappa}_t)_{t \geq 0}$, where for $x, z \in \mathbb{R}^d$ and $u \in [0,1],$

$$
U^{\tilde{\nu}}(x, z, u) := x \left(1_{\{u \le \frac{1}{2}\rho^{\tilde{\nu}}(-x, z)\}} - 1_{\{\frac{1}{2}\rho^{\tilde{\nu}}(-x, z) < u \le \frac{1}{2}(\rho^{\tilde{\nu}}(-x, z) + \rho^{\tilde{\nu}}(x, z))\}} \right)
$$
\nwith $\rho^{\tilde{\nu}}(x, z) := \frac{\tilde{\nu}_x(\mathrm{d}z)}{\nu(\mathrm{d}z)} \in [0, 1].$

• Luo, D. and Wang, J.: Refined couplings and Wasserstein-type distances for SDEs with Lévy noises, Stoch. Process. Appl., 129 (2019), 3129–3173.

• Liang, M., Majka, M.B. and Wang, J.: Exponential ergodicity for SDEs and McKean-Vlasov processes with Lévy noise, Ann. Inst. Henri Poincaré Probab. Stat., 57 (2021), 1665-1701.

K ロ ト K 何 ト K ヨ ト K ヨ

• Consider the following SDE

$$
\begin{cases} \mathrm{d}\tilde{X}_t = b_t(\tilde{X}_t) \,\mathrm{d}t + \mathrm{d}Z_t \\ \mathrm{d}\tilde{Y}_t^{\tilde{\nu},\kappa} = \tilde{b}_t(\tilde{Y}_t^{\tilde{\nu},\kappa}) \,\mathrm{d}t + \mathrm{d}Z_t + \int_{\mathbb{R}^d \times [0,1]} U^{\tilde{\nu}}((\tilde{X}_{t-} - \tilde{Y}_{t-}^{\tilde{\nu},\kappa}), z, u)N(\mathrm{d}t, \mathrm{d}z, \mathrm{d}u) \end{cases}
$$

has a unique strong solution $(\tilde{X}_t, \tilde{Y}^{\tilde{\nu}, \kappa}_t)_{t \geq 0}$, where for $x, z \in \mathbb{R}^d$ and $u \in [0,1],$

$$
U^{\tilde{\nu}}(x, z, u) := x \left(1_{\{u \le \frac{1}{2}\rho^{\tilde{\nu}}(-x, z)\}} - 1_{\{\frac{1}{2}\rho^{\tilde{\nu}}(-x, z) < u \le \frac{1}{2}(\rho^{\tilde{\nu}}(-x, z) + \rho^{\tilde{\nu}}(x, z))\}} \right)
$$
\nwith $\rho^{\tilde{\nu}}(x, z) := \frac{\tilde{\nu}_x(\mathrm{d}z)}{\nu(\mathrm{d}z)} \in [0, 1].$

• Luo, D. and Wang, J.: Refined couplings and Wasserstein-type distances for SDEs with Lévy noises, Stoch. Process. Appl., 129 (2019), 3129–3173.

• Liang, M., Majka, M.B. and Wang, J.: Exponential ergodicity for SDEs and McKean-Vlasov processes with Lévy noise, Ann. Inst. Henri Poincaré Probab. Stat., 57 (2021), 1665-1701.

イロト イ押ト イヨト イヨト

 \equiv \cap α

• For any $t \geq s$,

•

$$
d\psi(|r_t|) = \frac{\psi'(|r_t|)}{|r_t|} \langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa}) \rangle 1_{\{r_t \neq \mathbf{0}\}} dt + \frac{1}{2} \nu_{(r_t)_{\kappa}} (\mathbb{R}^d) \big(\psi(|r_t| + \kappa \wedge |r_t|) + \psi(|r_t| - \kappa \wedge |r_t|) - 2\psi(|r_t|) \big) dt + d\overline{\mathcal{M}}_{s,t}
$$

for some martingale $(\overline{\mathcal{M}}_{s,t})_{t>s}$.

$$
\langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa})\rangle
$$

• Coupling time does not make sense in this setting.

4 D F

4 f →

 QQ

画

• For any $t \geq s$,

•

$$
d\psi(|r_t|) = \frac{\psi'(|r_t|)}{|r_t|} \langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa})\rangle 1_{\{r_t \neq \mathbf{0}\}} dt + \frac{1}{2} \nu_{(r_t)_{\kappa}}(\mathbb{R}^d) \big(\psi(|r_t| + \kappa \wedge |r_t|) + \psi(|r_t| - \kappa \wedge |r_t|) - 2\psi(|r_t|)\big) dt + d\overline{M}_{s,t}
$$

for some martingale $(\overline{\mathcal{M}}_{s,t})_{t>s}$.

$$
\langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa})\rangle
$$

4 D F

∢ 向 →

• Coupling time does not make sense in this setting.

画

Proof: application 2

Consider the McKean-Vlasov SDE

 $dX_t = b(X_t, \mathscr{L}_{X_t}) dt + dZ_t.$

Denote $\mu_t:=\mathscr{L}_{X_t}$ with $\mathscr{L}_{X_0}=\mu\in\mathscr{P}_1(\mathbb{R}^d)$ and $\hat{\mu}_t:=\mathscr{L}_{X_t}$ with $\mathscr{L}_{X_0}=\hat{\mu}\in\mathcal{P}_1$ $\mathscr{P}_1(\mathbb{R}^d)$. Consider the following two SDEs: for $\mu, \hat{\mu} \in \mathscr{P}_1(\mathbb{R}^d)$,

$$
dY_t^{\mu} = b(Y_t^{\mu}, \mu_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\mu}} = \mu,
$$

and

$$
dY_t^{\hat{\mu}} = b(Y_t^{\hat{\mu}}, \hat{\mu}_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\hat{\mu}}} = \hat{\mu}.
$$

Let

 $b_t(x) = b_t^{\mu}(x) := b(x, \mu_t), \qquad \tilde{b}_t(x) = b_t^{\hat{\mu}}(x) = b(x, \hat{\mu}_t), \quad x \in \mathbb{R}^d, \quad t \ge 0.$

Thus, two SDEs above can be reformulated into our framework. The SDE above is called the decoupled SDE associated with the Mc[Kea](#page-43-0)[n-](#page-45-0)[V](#page-43-0)[la](#page-44-0)[s](#page-45-0)[o](#page-46-0)v $\frac{1}{2}$ 2990 Jian Wang (Fujian Normal University) Quantitative estimates for Lévy driven SDEs February 25, 2023 23 / 25

Proof: application 2

Consider the McKean-Vlasov SDE

 $dX_t = b(X_t, \mathscr{L}_{X_t}) dt + dZ_t.$

Denote $\mu_t:=\mathscr{L}_{X_t}$ with $\mathscr{L}_{X_0}=\mu\in\mathscr{P}_1(\mathbb{R}^d)$ and $\hat{\mu}_t:=\mathscr{L}_{X_t}$ with $\mathscr{L}_{X_0}=\hat{\mu}\in\mathcal{P}_1$ $\mathscr{P}_1(\mathbb{R}^d)$. Consider the following two SDEs: for $\mu, \hat{\mu} \in \mathscr{P}_1(\mathbb{R}^d)$,

$$
dY_t^{\mu} = b(Y_t^{\mu}, \mu_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\mu}} = \mu,
$$

and

$$
dY_t^{\hat{\mu}} = b(Y_t^{\hat{\mu}}, \hat{\mu}_t) dt + dZ_t, \quad \mathscr{L}_{Y_0^{\hat{\mu}}} = \hat{\mu}.
$$

Let

 $b_t(x) = b_t^{\mu}(x) := b(x, \mu_t), \qquad \tilde{b}_t(x) = b_t^{\hat{\mu}}(x) = b(x, \hat{\mu}_t), \quad x \in \mathbb{R}^d, \quad t \ge 0.$

Thus, two SDEs above can be reformulated into our framework. The SDE above is called the decoupled SDE associated with the Mc[Kea](#page-44-0)[n-](#page-46-0)[V](#page-43-0)[la](#page-44-0)[s](#page-45-0)[o](#page-46-0)[v S](#page-0-0)[D](#page-49-0)[E.](#page-0-0) QQQ

Remark: total variation

• For any
$$
t \ge s
$$
,
\n
$$
d\psi(|r_t|) = \frac{\psi'(|r_t|)}{|r_t|} \langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa}) \rangle 1_{\{r_t \neq 0\}} dt
$$
\n
$$
+ \frac{1}{2} \nu_{(r_t)_{\kappa}}(\mathbb{R}^d) \big(\psi(|r_t| + \kappa \wedge |r_t|) + \psi(|r_t| - \kappa \wedge |r_t|) - 2\psi(|r_t|) \big) dt + \cdots
$$

• Lévy kernel $\mu(r, dz)$ associated with the coupling process is given by

$$
\mu(r, \mathrm{d}z) = \frac{1}{2}\mu_r(\mathbb{R}^d) \big(\delta_r(\mathrm{d}z) + \delta_{-r}(\mathrm{d}z)\big), \qquad r \ge 0.
$$

 \bullet Let $\overline{\mathscr{L}}$ be the Lévy-type operator expressed as follows: for $h\in C_b^2(\mathbb{R})$ and $r\geq 0,$

$$
(\overline{\mathscr{L}}h)(r) = h'(r)(\phi(r) + M) + \int_{\mathbb{R}} \left(h(r+z) - h(r) \right) \overline{\mu}(r, dz).
$$

where $\phi(r) := K_1 1_{\{0 \le r \le \ell_0\}} - K_2 r 1_{\{r > \ell_0\}}$, and the Lévy measure $\overline{\mu}$ fulfils

 $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ Ω

Remark: total variation

- For any $t > s$, $\mathrm{d}\psi(|r_t|)=\frac{\psi'(|r_t|)}{|r_t|}$ $\frac{(|r_t|)}{|r_t|} \langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa}) \rangle \mathbb{1}_{\{r_t \neq \mathbf{0}\}} dt$ $+\frac{1}{2}$ $\frac{1}{2}\nu_{(r_t)_\kappa}(\mathbb{R}^d)(\psi(|r_t|+\kappa\wedge|r_t|)+\psi(|r_t|-\kappa\wedge|r_t|)-2\psi(|r_t|)) dt+\cdots$
- Lévy kernel $\mu(r, dz)$ associated with the coupling process is given by

$$
\mu(r,\mathrm{d}z) = \frac{1}{2}\mu_r(\mathbb{R}^d)\big(\delta_r(\mathrm{d}z) + \delta_{-r}(\mathrm{d}z)\big), \qquad r \ge 0.
$$

 \bullet Let $\overline{\mathscr{L}}$ be the Lévy-type operator expressed as follows: for $h\in C_b^2(\mathbb{R})$ and $r\geq 0,$

$$
(\overline{\mathscr{L}}h)(r) = h'(r)(\phi(r) + M) + \int_{\mathbb{R}} \left(h(r+z) - h(r) \right) \overline{\mu}(r, dz).
$$

where $\phi(r) := K_1 1_{\{0 \le r \le \ell_0\}} - K_2 r 1_{\{r > \ell_0\}}$, and the Lévy measure $\overline{\mu}$ fulfils

 $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ Ω

Remark: total variation

- For any $t > s$, $\mathrm{d}\psi(|r_t|)=\frac{\psi'(|r_t|)}{|r_t|}$ $\frac{(|r_t|)}{|r_t|} \langle r_t, b_t(\tilde{X}_t) - \tilde{b}_t(\tilde{Y}_t^{\nu,\kappa}) \rangle \mathbb{1}_{\{r_t \neq \mathbf{0}\}} dt$ $+\frac{1}{2}$ $\frac{1}{2}\nu_{(r_t)_\kappa}(\mathbb{R}^d)(\psi(|r_t|+\kappa\wedge|r_t|)+\psi(|r_t|-\kappa\wedge|r_t|)-2\psi(|r_t|)) dt+\cdots$
- Lévy kernel $\mu(r, dz)$ associated with the coupling process is given by

$$
\mu(r, \mathrm{d}z) = \frac{1}{2}\mu_r(\mathbb{R}^d) \big(\delta_r(\mathrm{d}z) + \delta_{-r}(\mathrm{d}z)\big), \qquad r \ge 0.
$$

 \bullet Let $\overline{\mathscr{L}}$ be the Lévy-type operator expressed as follows: for $h\in C_b^2(\mathbb{R})$ and $r\geq 0,$

$$
(\overline{\mathscr{L}}h)(r) = h'(r)(\phi(r) + M) + \int_{\mathbb{R}} \left(h(r+z) - h(r) \right) \overline{\mu}(r, dz).
$$

where $\phi(r) := K_1 1_{\{0 \le r \le \ell_0\}} - K_2 r 1_{\{r > \ell_0\}}$, and the Lévy measure $\overline{\mu}$ fulfils

 $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$ $\overline{\mu}(r,[x,\infty)) \geq 1_{\{0 \leq x \leq r\}} \mu_x(\mathbb{R}^d), r \geq 0, x \geq 0; \quad \overline{\mu}(r,(-\infty,x)) = 0, r \geq 0, x < 0.$

Thank you!

4 日下

∢ ⁄ ⊕ →

 299

活

∍