2019年11月16日 南京大学秦厚荣教授学术报告

发布者:陈伯琪发布时间:2019-10-16浏览次数:1154



报 告 人: 秦厚荣 教授

报告题目:Congruent numbers, quadratic forms and algebraic K-theory  

报告时间:20191116

报告摘要:  We show that if a square-free and odd (respectively, even) positive integer n is a congruent number, then

respectively,

If we assume that the weak

 Brich-Swinnerton-Dyer conjecture is true for the elliptic curves , then, conversely, these equalities imply that n is a congruent number.

We shall also discuss some applications of the proposed method. In particular, for a prime p, we show that  if  (mod 8) is a congruent number, then the 8-rank of  equals one, and if   (mod 16) with  then 2p is not a congruent number.