报 告 人:孙慧 教授
报告题目:Orthogonal polynomials andRogers-Ramanujan type identities
报告时间:2021年11月11日(周四)下午3:00
报告地点:腾讯会议(会议号:556639171)
主办单位:数学与统计学院、科学技术研究院
报告人简介:
孙慧,2004年毕业于山东大学,2009年毕业于南开大学组合数学中心获得博士学位,现为南开大学组合数学中心教授,博士生导师。主要研究方向:代数组合学,q级数和特殊函数,在相关领域发表多篇重要成果,论文发表在Adv. Appl. Math., SIAM J. Discrete Math., J. Number Theory等组合数学领域的重要国际期刊上。曾主持多项国家自然科学基金项目,一项天津市青年项目,现主持一项国家自然科学基金面上项目。
报告摘要:
The study of Rogers-Ramanujan type identities is always one focus inthe theory of q-series and special functions. Over the past several decades, these identities have found importantapplications in number theory, combinatorics, Lie algebra, physics and computerscience. In Ramanujan's Lost Notebooks and the famous Slater's list, there arenumerous identities of Rogers-Ramanujan type. It's known that q-orthogonalpolynomials are closely related to these identities via their generatingfunctions, the three-term recurrence relations and other properties. In thistalk, we will introduce the applications of orthogonal polynomials in the studyof q-series, from which we can obtain identities on partial theta functions andmany classic Rogers-Ramanujan type identities.